Reformulating Nonlinear Projection Equations as
Neural Network Learning

Dawen Wu

Centre national de la recherche scientifique (CNRS)
National University of Singapre (NUS)

01,/07/2025

Dawen Wu (CNRS& NUS) IcSP 01/07/2025

1/26



Table of Contents

o Problem Setup: Nonlinear Projection Equation
© Preliminaries: ODE Modeling and PINNs

e Methodology

e Experiments

© Concluing Remarks

Dawen Wu (CNRS& NUS) ICSP

01/07/2025

2/26



Table of Contents

@ Problem Setup: Nonlinear Projection Equation

Dawen Wu (CNRS& NUS) ICSP 01/07/2025 3/26



Problem Definition

Definition (Nonlinear projection equation or NPE)

A nonlinear projection equation is to find a vector x* € Q that solves

Po(x* — G(x)) = x*, 1)

where G : R” — R"” is a nonlinear function, and Q C R” is a feasible set. Po : R" — Q is a
projection function that maps a point z € R"” onto €2, defined as

Pa(z) = arg min |1z — x| )

The objective is to find x* € R" that solves (1).

Consider the problem NPE(S2, G), with the following properties:
@ The feasible set Q) is a box-constrained , spherical-constrained , affined-constrained set
@ The function G(-) is locally Lipschitz continuous. on Q.

@ Jacobian VG(x) for x € Q is positive semi-definite.
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Why Study NPEs

Many constrained optimization problems can be reformulated as NPEs. !

Proposition (NCP, Harker & Pang, 1990)

Let Q C R" be a nonempty closed convex set. Then x™ solves the nonlinear
complementarity problem

G(x)>0, x*>0, G(x*)'x*=0. (3)

if and only if x* solves NPE (R, G), where R} = {x € R"|x > 0} represents the set of
non-negative real vectors.

Proposition (VI, Harker & Pang, 1990)

Let Q C R" be a nonempty closed convex set. Then x* solves the variational inequality

(x—x) G(x*)>0, xeqQ. (4)

if and only if x* solves NPE(Q2, G).

lHarker, P. T., & Pang, J. S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a

survey of theory, algorithms and applications. Mathematical programming, 48(1-3), 161:220.
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Example

A standard convex optimization problem is formulated as follows:

i f
erII]Q” (X)
st. gi(x)<0, i=1,....m

where the objective function f : R” — R and the constraint functions g; : R” — R are convex.

This problem can be reformulated as an NPE.

The Karush—Kuhn—Tucker conditions (KKT conditions) are
Vif(x)+ uVg(x) =0,

g(x) <0, u>0, ug(x)=0,

The KKT conditions are equivalent to the following equation system :

Vi(x) + Ve(x)" (u+g(x)" =0

(utg(x)"—u=0
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Tool 1: Neurodynamic Optimization

Xia & Feng (2007) proposed the following ODE method to solve NPEs: 2 3

ODE system: Models the NPE(Q2, G) as a first-order autonomous ODE system :

Y — 6 (Paly)) + Paly) v, ®)

where the ©, G(+) and Pq(-) are consistent with the target NPE problem.

We simplify it as % = ®(y), where

®(y) = —G (Pa(y)) + Paly) — y- (9)

Solution of ODE:

@ Optimization is finding a vector. ODE is finding a function.

@ y:R — R"is called a state solution if its derivative satisfies % = Pd(y).

@ We denote y* € R” as an equilibrium point if ®(y*) =0

2Hopfield J J, Tank D W. Computing with neural circuits: A model[J]. Science, 1986, 233(4764): 625-633.

Xia, Youshen, and Gang Feng. "A new neural network for solving nonlinear projection equations.” Neural Networks 20.5
(2007): 577-589.
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Tool 1: Neurodynamic Optimization

Lemma (State Solution Existence)

If G(-) is locally Lipschitz continuous on the feasible set 2, then for each initial point yo € R"

there exists a continuous and unique solution trajectory for the ODE system & d(y).

dt

Lemma (Equilibrium Existence)

V&(y) is positive semi-definite for any y.

Theorem (Xia & Feng, Neural Networks, 2007)

Consider the problem NPE(S2, G), with the Assumptions hold . Given any initial condition,

y(to) = yo, the state solution of the ODE system converges to the optimal solution of
NPE (L, G) as time t goes to infinity, i.e,

Jim_y(t) =<7, (10)

where x* is an optimal solution of NPE (S, G).
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Tool 2: Physics-Informed Neural Network (PINN)

ML Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations .

MRaissi, P Perdikaris, GE Kariadak Elsevier Little story:
We introduce physics-informed neural networks-neural networks that are trained to solve

supervised learning tasks while respecting any given laws of physics described by general

moinsss partal ifrentl cquationa. 1 ha ik, ws precantou deveopmets e @ Nov. 2020, Start of Ph.D., 800 citations.
context of solving two main classes of problems: data-driven solution and data-driven

discovery of partial differential equations. Depending on the nature and arrangement of the H H
available data, we devise two distinct types of algorithms, namely continuous time and ° NOV. 2023' End Of Ph . D ' 7000 citations.

¢ Save 99 Cite [Cited by 7153] Related articles All 7 versions Web of Science: 3349

@ Consider PDE(s) in general form:

s N[ =0, xcQCR", tc[o,T]: (v)t:%, (11)

where u(t, x) denotes the solution, A/[-] is a nonlinear operator.

@ The above setup covers a wide range of PDEs in math, physics, engineering. E.g.,
Burger's equation in 2D

(-
Nl = Mt = Dot ()= 2, (9 = (12)
@ PINNs aim to use Neural network dg(t, x) to solve the PDE
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Tool 2: Physics-Informed Neural Network (PINN)

@ {y(t,x) is a neural network with trainable parameters 6.

L=L,+ Lr (13)
Ny N
1 N2 1 o SN2
dg(th, x}) u') , L= -— (ﬁ tr, x¢) + N t',x')
Lo UI:I(Q = g 2 (807 + MTEN(E )
(14)

@ L, enforces initial and boundary conditions, while £¢ imposes the PDE.
@ L, considers initial and boundary training data {t/, x/, u’},'.\’:“l.
@ Ly considers collocation points {tl",,xl’;,u"},'.\’:”l. {t},x}}f\gl.
@ {p is trained toward minimizing £ to become a solution of the PDE.
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Methodology: Overview

>

c Neural network ‘\ CLoss computation)
N (t; w) (t;w)

/ k ‘ Incorporate)
‘ (Neurodynami

L+** optimization)
NPE

Three steps:
@ Reformulate the NPE as an ODE system by the neurodynamic approach (2007).

@ Build a NN model with the initial condition (to, yo).

@ Train the NN toward solving the ODE system.
The NPE is not entered directly in the NN, but is incorporated in the loss calculation.
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Methodology: Model Details

@ NN model:
P(t;w) = yo + (1 - e*(f*fo)) N(t;w), t€ [to, T] (15)

modifies the NN output

o t€eR istheinput, y(t;w) is the predicted state at t.

@ N(:;w) is the FNN with parameters w.

@ (to,y0) is the initial point, [to, T] is the time range.

@ yo = §(to; w) , the initial condition is always satisfied regardless w.

@ Loss function:

cmw) = o 3 |2 gy w))H , (16)

teT

o T = {t;} is the collocation time points. Each point is sampled by U(to, T).

99(tiw)
ot
automatic differentiation, e.g., Pytorch.

@ &(-) is the ODE system corresponding to the NPE to be solved.

is the derivatives of the model output w.r.t. the input, computed by
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Methodology: NN Prediction to NPE

When ¢ € [to. T When ¢t =T
Fully connected network Fully connected network
(t;w)
)
t€ [to, T} = ‘?W End state
. —_— — @ —_— ";%) —i(t = T; ),
it ——
A y
\
\
\
\
\
S —” }
........... > |
(—_ NN as approximate state solution NN provides prediction "'
“\ to ODE system to NPE ’/’
N dy — (y) Po(z — G(z)) = « &

@ Consider t € [to, T] as a variable (LHS)

» the NN itself is an approximate state solution to the ODE system
@ Fix t = T at the end time (RHS)

» the NN end state y(t = T;w) € R" is a prediction to the NPE
Dawen Wu (CNRS& NUS) ICsP
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Example 1: VI with 4 Variables

@ Consider the following variational inequities with 4 variables:

x—x)"G(x*)>0 xeQ, (17)
X1~ 255 + 5 — 13
1.2x1 + 7 Q={xeR"|1<x <100,-3 < x < 100,
G(x) = , (18)
3x3 + 8x —10 < x3 <100,1 < x4 < 100}.
Ixs +2x — 05 — 12
@ By Prop. 2.3 in Harker & Pang (1990), the VI is reformulated as NPE(G, Q).
@ Mean square error evaluates how well the NN solves the ODE system
1 ay(t; w R
emw) = o 3 240~ ags(eiw) . (19)
Il ot
@ NPE error evaluates how well the NN solves the NPE
NPE _error(xpred) = || Pa(Xpred — G(Xpred)) — Xpredll, (20)

where Xped € R* is the NN prediction.
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Example 1: VI with 4 Variables

(A)1g2 © =
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Figure: (A) MSE loss. (B) NPE error. (C) NN and RK (ODE solver) solution procedures.

@ 3000 iterations: M.S.E loss 126.99 — 0.1 , NPE error 15.42 — 0.01 .

@ In each iteration:

» the NN improves the predicted state solution over the entire time range.
» the RK advances a collocation point to a new end state.
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Example 2: NPE with 1000 variables

@ Consider the following NPE problem:

+

1

X ———— | =x{, i=1,2,...,1000. (21)
2 (MX*),' + qi

@ M ¢ R1000x1000 3nd g ¢ R09 3re problem data.
@ The objective is to find an optimal solution x* = [x{', x5, . .., Xjogo] € R
that solves (21).

4

@ We generate a problem set with ten different (M, g) *, which correspond

to ten different NPE instances.

4the problem data is stored in https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy
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Example 2: NPE with 1000 variables

lteration M.S.E. loss CPU time NPE error . CPU time NPE error
(Mean + STD)  (Mean & STD)  (Mean + STD) Time range (Mean + STD) (Mean + STD)

0 470.29 +92.68  0.00 + 0.00 4839.33 + 673.10

100 45.85+39.83  2.36 +0.60 15.34 + 16.46 [0,2] 369.33 +44.27 1.87 +0.16

500 32.10 £ 26.70 11.32+0.68 0.67 +0.89 [0\ 4] 547.93 + 74.83 0.48 + 0.06

1000 26.814+11.53 2257+ 1.16 0.31+0.18

3000 1520 +11.23  67.8241.40 0.19 4+ 0.06 [0,6] 739.74 + 88.02 0.14£0.02

5000 123341044 112914220 0134007 [0, 8] 1048.92£88.20  0.04+0.01

7000 8.16 +8.13 157.98:2.86  0.10+0.06 [0,10] 1542.07 4+ 205.43  0.01 +£0.01

10000 2.93 +3.38 225.474+3.82  0.05+0.04

30000 0.73+1.18 670.384+5.82  0.01+0.01

Table: The RK method
Table: The NN method

The NN method:
@ Finds the optimal solution x* for the 1000-dimensional NPE.

@ Outperforms the neurodynamic approach (Xia & Feng, 2007) with the RK solver.

@ \Very efficient when the accuracy requirement is relaxed.

» The NN: 20s to reach NPE error 0.31
» The RK: 500s to reach NPE error 0.48.
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Experiments - Comparison with PINNs

Example 1 Example 2 Example 3
= our = our 10f = our
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107
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Take advantage of the problem structure!
@ Our NN method focuses on improving the terminal state, t = T.

@ The baseline method considers equally the entire input space, [to, T].
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Concluding remarks

mization

@ An optimization problem is first modeled as an ODE system. Its convergence is proven
using a Lyapunov function and LaSalle's invariance principle.

@ PINN is employed to solve the ODE system. The algorithm and the neural network are
specifically tailored to better solve the target problem.

@ We reformulate an optimization problem as a neural network training task. This allows
various Al tools, such as CUDA for acceleration, to be directly applied to solve these
optimization problems.

@ This opens the door for many Al methods, such as transfer learning and multi-task
learning, to be leveraged for solving optimization problems.
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Future works

This thesis is only the beginning of a series of works.

@ Large scale problem:
» Can the proposed NN solves problems with > 1 million variables?
@ Convergence: (Most asked!!!)

» Can the proposed NN has a theoretical guarantee?

» Can we derive an error bound w.r.t. training iteration?

@ Solve more optimization problems

» Can we solves some nonconvex problems ,e.g., Pseudoconvex, Biconvex.

» How to take advantage of the problem structure?

@ What about Operator Learning (DeepONet)?

» PINN finds the solution of a PDE, DeepONet finds the PDE operator.
» What happen if we replace PINN with DeepONet?

Dawen Wu (CNRS& NUS) IcSP 01/07/2025
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Thank you for coming!!!!
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