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Problem Definition

Definition (Nonlinear projection equation or NPE)
A nonlinear projection equation is to find a vector x∗ ∈ Ω that solves

PΩ(x
∗ − G(x∗)) = x∗, (1)

where G : Rn → Rn is a nonlinear function, and Ω ⊂ Rn is a feasible set. PΩ : Rn → Ω is a
projection function that maps a point z ∈ Rn onto Ω, defined as

PΩ(z) = argmin
x∈Ω

∥z − x∥2. (2)

The objective is to find x∗ ∈ Rn that solves (1).

Assumption
Consider the problem NPE(Ω,G), with the following properties:

The feasible set Ω is a box-constrained , spherical-constrained , affined-constrained set

The function G(·) is locally Lipschitz continuous. on Ω.

Jacobian ∇G(x) for x ∈ Ω is positive semi-definite.
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Why Study NPEs

Many constrained optimization problems can be reformulated as NPEs. 1

Proposition (NCP, Harker & Pang, 1990)

Let Ω ⊂ Rn be a nonempty closed convex set. Then x∗ solves the nonlinear
complementarity problem

G(x∗) ≥ 0, x∗ ≥ 0, G(x∗)T x∗ = 0. (3)

if and only if x∗ solves NPE(Rn
+,G), where Rn

+ = {x ∈ Rn|x ≥ 0} represents the set of
non-negative real vectors.

Proposition (VI, Harker & Pang, 1990)

Let Ω ⊂ Rn be a nonempty closed convex set. Then x∗ solves the variational inequality

(x − x∗)
T
G (x∗) ≥ 0, x ∈ Ω. (4)

if and only if x∗ solves NPE(Ω,G).

1
Harker, P. T., & Pang, J. S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a

survey of theory, algorithms and applications. Mathematical programming, 48(1-3), 161-220.
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Example

Example

A standard convex optimization problem is formulated as follows:

min
x∈Rn

f (x)

s.t. gi (x) ≤ 0, i = 1, . . . ,m
(5)

where the objective function f : Rn → R and the constraint functions gi : Rn → R are convex.
This problem can be reformulated as an NPE.

The Karush–Kuhn–Tucker conditions (KKT conditions) are

∇f (x) + u∇g(x) = 0,

g(x) ≤ 0, u ≥ 0, ug(x) = 0,
(6)

The KKT conditions are equivalent to the following equation system :

∇f (x) +∇g(x)T (u + g(x))+ = 0

(u + g(x))+ − u = 0
(7)
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Tool 1: Neurodynamic Optimization

Xia & Feng (2007) proposed the following ODE method to solve NPEs: 2 3

ODE system: Models the NPE(Ω,G) as a first-order autonomous ODE system :

dy

dt
= −G (PΩ(y)) + PΩ(y)− y , (8)

where the Ω, G(·) and PΩ(·) are consistent with the target NPE problem.
We simplify it as dy

dt
= Φ(y), where

Φ(y) = −G (PΩ(y)) + PΩ(y)− y . (9)

Solution of ODE:

Optimization is finding a vector. ODE is finding a function.

y : R → Rn is called a state solution if its derivative satisfies dy
dt

= Φ(y).

We denote y∗ ∈ Rn as an equilibrium point if Φ(y∗) = 0

2
Hopfield J J, Tank D W. Computing with neural circuits: A model[J]. Science, 1986, 233(4764): 625-633.

3
Xia, Youshen, and Gang Feng. ”A new neural network for solving nonlinear projection equations.” Neural Networks 20.5

(2007): 577-589.
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Tool 1: Neurodynamic Optimization

Lemma (State Solution Existence)

If G(·) is locally Lipschitz continuous on the feasible set Ω, then for each initial point y0 ∈ Rn

there exists a continuous and unique solution trajectory for the ODE system dy
dt

= Φ(y).

Lemma (Equilibrium Existence)

∇Φ(y) is positive semi-definite for any y .

Theorem (Xia & Feng, Neural Networks, 2007)

Consider the problem NPE(Ω,G), with the Assumptions hold . Given any initial condition,

y(t0) = y0, the state solution of the ODE system converges to the optimal solution of
NPE(Ω,G) as time t goes to infinity, i.e,

lim
t→∞

y(t) = x∗, (10)

where x∗ is an optimal solution of NPE(Ω,G).
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Tool 2: Physics-Informed Neural Network (PINN)

Little story:

Nov. 2020, Start of Ph.D., 800 citations.

Nov. 2023, End of Ph.D., 7000 citations.

Consider PDE(s) in general form:

ut +N [u] = 0, x ∈ Ω ⊆ Rn, t ∈ [0,T ]; (·)t =
∂(·)
∂t

, (11)

where u(t, x) denotes the solution, N [·] is a nonlinear operator.

The above setup covers a wide range of PDEs in math, physics, engineering. E.g.,
Burger’s equation in 2D

N [u] = λ1uxx − λ2ux ; (·)x =
∂(·)
∂x

, (·)xx =
∂2(·)
∂x2

(12)

PINNs aim to use Neural network ûθ(t, x) to solve the PDE
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Tool 2: Physics-Informed Neural Network (PINN)

ûθ(t, x) is a neural network with trainable parameters θ.

L = Lu + Lf (13)

Lu =
1

Nu

Nu∑
i=1

(
ûθ(t

i
u, x

i
u)− ui

)2

, Lf =
1

Nf

Nf∑
i=1

(
ût(t

i
f , x

i
f ) +N [û](t if , x

i
f )
)2

(14)

Lu enforces initial and boundary conditions, while Lf imposes the PDE.

Lu considers initial and boundary training data {t iu, x i
u, u

i}Nu
i=1.

Lf considers collocation points {t iu, x i
u, u

i}Nu
i=1. {t

i
f , x

i
f }

Nf
i=1.

ûθ is trained toward minimizing L to become a solution of the PDE.
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Methodology: Overview

Neural network Loss computation

Incorporate
(Neurodynamic 
optimization)

NPE

Three steps:

Reformulate the NPE as an ODE system by the neurodynamic approach (2007).

Build a NN model with the initial condition (t0, y0).

Train the NN toward solving the ODE system.

The NPE is not entered directly in the NN, but is incorporated in the loss calculation.
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Methodology: Model Details

NN model:

ŷ(t;w) = y0 +
(
1− e−(t−t0)

)
︸ ︷︷ ︸

modifies the NN output

N(t;w), t ∈ [t0,T ] (15)

t ∈ R is the input, ŷ(t;w) is the predicted state at t.

N(·;w) is the FNN with parameters w .

(t0, y0) is the initial point, [t0,T ] is the time range.

y0 = ŷ(t0;w) , the initial condition is always satisfied regardless w .

Loss function:

L(T,w) =
1

|T|
∑
t∈T

∥∥∥∥∂ŷ(t;w)

∂t
− Φ(ŷ(t;w))

∥∥∥∥ , (16)

T = {ti} is the collocation time points. Each point is sampled by U(t0,T ).

∂ŷ(t;w)
∂t

is the derivatives of the model output w.r.t. the input, computed by

automatic differentiation, e.g., Pytorch.

Φ(·) is the ODE system corresponding to the NPE to be solved.
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Methodology: NN Prediction to NPE

NN as approximate state solution 
to ODE system

NN provides prediction 
to NPE

When When 

Fully connected network Fully connected network

End state

Consider t ∈ [t0,T ] as a variable (LHS):

▶ the NN itself is an approximate state solution to the ODE system.

Fix t = T at the end time (RHS) :

▶ the NN end state ŷ(t = T ;w) ∈ Rn is a prediction to the NPE.
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Example 1: VI with 4 Variables

Consider the following variational inequities with 4 variables:

(x − x∗)
T
G (x∗) ≥ 0, x ∈ Ω, (17)

G(x) =


x1 − 2

x1+0.8
+ 5x2 − 13

1.2x1 + 7x2
3x3 + 8x4

1x3 + 2x4 − 4
x4+2

− 12

 ,
Ω = {x ∈ R4 |1 ≤ x1 ≤ 100,−3 ≤ x2 ≤ 100,

− 10 ≤ x3 ≤ 100, 1 ≤ x4 ≤ 100}.
(18)

By Prop. 2.3 in Harker & Pang (1990), the VI is reformulated as NPE(G ,Ω).

Mean square error evaluates how well the NN solves the ODE system

L(T,w) =
1

|T|
∑
t∈T

∥∥∥∥∂ŷ(t;w)

∂t
− Φ(ŷ(t;w))

∥∥∥∥ . (19)

NPE error evaluates how well the NN solves the NPE

NPE error(xpred) = ∥PΩ(xpred − G(xpred))− xpred∥, (20)

where xpred ∈ R4 is the NN prediction.
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Example 1: VI with 4 Variables

0 10000 20000 30000 40000 50000
Iteration

10 1

100

101

102

M
.S

.E
. 
lo

ss

0 10000 20000 30000 40000 50000
Iteration

10 2

100

N
PE

 e
rr

o
r

0 2 4 6 8 10
t

10

0

10

20

y(
t;
w
)

0 2 4 6 8 10
t

0.5

0.0

0.5

1.0

y(
t;
w
)

y1(t; w)

y2(t; w)

y3(t; w)

y4(t; w)

0 2 4 6 8 10
t

10

0

10

20

y(
t;
w
)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)

y1(t)
y2(t)
y3(t)
y4(t)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)

0 2 4 6 8 10
t

10

0

10

20

30

y(
t)R

K

N
N

(A)

(B)

(C)

Figure: (A) MSE loss. (B) NPE error. (C) NN and RK (ODE solver) solution procedures.

8000 iterations: M.S.E loss 126.99 → 0.1 , NPE error 15.42 → 0.01 .

In each iteration:

▶ the NN improves the predicted state solution over the entire time range.

▶ the RK advances a collocation point to a new end state.
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Example 2: NPE with 1000 variables

Consider the following NPE problem:(
x∗i − 1

2
√
(Mx∗)i + qi

)+

= x∗i , i = 1, 2, . . . , 1000. (21)

M ∈ R1000×1000 and q ∈ R1000 are problem data.

The objective is to find an optimal solution x∗ = [x∗1 , x
∗
2 , . . . , x

∗
1000] ∈ R1000

that solves (21).

We generate a problem set with ten different (M, q) 4, which correspond

to ten different NPE instances.

4
the problem data is stored in https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy
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Example 2: NPE with 1000 variables

Iteration
M.S.E. loss
(Mean ± STD)

CPU time
(Mean ± STD)

NPE error
(Mean ± STD)

0 470.29± 92.68 0.00± 0.00 4839.33± 673.10
100 45.85± 39.83 2.36± 0.60 15.34± 16.46
500 32.10± 26.70 11.32± 0.68 0.67± 0.89
1000 26.81± 11.53 22.57± 1.16 0.31± 0.18
3000 15.20± 11.23 67.82± 1.40 0.19± 0.06
5000 12.33± 10.44 112.91± 2.20 0.13± 0.07
7000 8.16± 8.13 157.98± 2.86 0.10± 0.06
10000 2.93± 3.38 225.47± 3.82 0.05± 0.04
30000 0.73± 1.18 670.38± 5.82 0.01± 0.01

Table: The NN method

Time range
CPU time
(Mean ± STD)

NPE error
(Mean ± STD)

[0, 2] 369.33± 44.27 1.87± 0.16
[0, 4] 547.93± 74.83 0.48± 0.06
[0, 6] 739.74± 88.02 0.14± 0.02
[0, 8] 1048.92± 88.20 0.04± 0.01
[0, 10] 1542.07± 205.43 0.01± 0.01

Table: The RK method

The NN method:

Finds the optimal solution x∗ for the 1000-dimensional NPE.

Outperforms the neurodynamic approach (Xia & Feng, 2007) with the RK solver.

Very efficient when the accuracy requirement is relaxed.

▶ The NN: 20s to reach NPE error 0.31

▶ The RK: 500s to reach NPE error 0.48.
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Experiments - Comparison with PINNs
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Remark

Take advantage of the problem structure!

Our NN method focuses on improving the terminal state, t = T .

The baseline method considers equally the entire input space, [t0,T ].
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Concluding remarks

Machine
Learning

ODE Optimization

An optimization problem is first modeled as an ODE system. Its convergence is proven
using a Lyapunov function and LaSalle’s invariance principle.

PINN is employed to solve the ODE system. The algorithm and the neural network are
specifically tailored to better solve the target problem.

We reformulate an optimization problem as a neural network training task. This allows
various AI tools, such as CUDA for acceleration, to be directly applied to solve these
optimization problems.

This opens the door for many AI methods, such as transfer learning and multi-task
learning, to be leveraged for solving optimization problems.
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Future works

This thesis is only the beginning of a series of works.

Large scale problem:

▶ Can the proposed NN solves problems with > 1 million variables?

Convergence: (Most asked!!!)

▶ Can the proposed NN has a theoretical guarantee?

▶ Can we derive an error bound w.r.t. training iteration?

Solve more optimization problems

▶ Can we solves some nonconvex problems ,e.g., Pseudoconvex, Biconvex.

▶ How to take advantage of the problem structure?

What about Operator Learning (DeepONet)?

▶ PINN finds the solution of a PDE, DeepONet finds the PDE operator.

▶ What happen if we replace PINN with DeepONet?
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Thank you!

Thank you for coming!!!!
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