Approximation of the Inverse CDF using Transport Map
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Problem Statement

Many important probability distributions, such as the normal distribution, lack closed-
form analytical solutions for their inverse cumulative distribution functions (inverse
CDFs or quantile functions).

Traditional non-parametric methods rely on numerical integration and interpolation,
which can be computationally expensive and limit accuracy.

Goal: Develop novel, more accurate parametric methods to approximate the inverse
CDF.

Background: Transport Maps

A transport map T creates a coupling between a simple reference distribution (e.g.,
standard uniform) and a complex target distribution.

Key Insight: For a 1D problem, if the reference distribution is Uniform(0,1), the opti-
mal transport map 7' is exactly the inverse CDF (&) of the target distribution.
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Figure 1. Left: General n-dimensional transport map. Right: In 1D, the map from a uniform
distribution to a target distribution is the inverse CDF.

Proposed Methods

We propose a composite approximation function combining a logit function with
a neural network (NN):

Biny(iw) = N (1og (1 ! u) ;w) ~ 071 (u)

We introduce two distinct training strategies for the NN weights w.
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Figure 2. Overview of our parametric methods (ITML, IPIL) versus existing non-parametric
approaches. Our methods avoid interpolation and ITML is also free from numerical integration.

Method 1: Inverse Transport Map Learning (ITML)

This approach is derived from the transport map theory by minimizing the Kullback-
Leibler (KL) divergence.

= Loss Function: Based on minimizing the KL divergence between the reference
and the transformed distribution.

= Key Advantage: It directly uses the Probability Density Function (PDF) 7(z) and is
completely free from numerical integration (NI-free) and interpolation.

= Constraint: The derivative of the approximation must be positive to ensure
invertibility.

Method 2: Inverse Physics-informed Learning (IPIL)

This approach formulates the problem as solving a differential equation using a
Physics-Informed Neural Network (PINN).

= Governing Equation: The derivative of our approximation should match the
derivative of the true inverse CDF, which is 1/7(®~(u)).

= Training Data: Requires a dataset of (u, z) pairs, where u = ®(z) is computed via
numerical integration.

= Key Advantage: Leverages the underlying physics (the PDF) to achieve high
accuracy and avoids explicit interpolation (Interpolation-free).

Experiments and Results

We validated our methods on standard normal, Beta, Gamma, and an abstract distri-
bution. The NN used has 3 hidden layers with 10 neurons each.

Case Study: Standard Normal Distribution

= ITML uses only the PDF, 7(z) e~ % /2,
= [PIL and other baseline methods use a training set of 10,000 (u, z) points.
= Performance is evaluated on a test set of 1 million points.
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Figure 3. Performance comparison on the standard normal distribution. Our proposed methods
(ITML, IPIL, marked with %) are compared against various existing methods, including numerical
integration with interpolation (NI+...) and explicit approximations (@, ).

Key Findings:

= As shown in the figure, IPIL achieves the lowest Mean Squared Error (E,,..),
outperforming all other methods.

= |PIL and ITML show the best performance in Maximum Absolute Error (E,,4.),
indicating a robust approximation across the entire domain.

= Both proposed methods significantly outperform traditional non-parametric
approaches like NI+Interpolation and the Inverse Empirical CDF (IECDF).

= Similar superior performance was observed for Beta and Gamma distributions.

Conclusions

= We introduced two novel parametric methods, ITML and IPIL, for
approximating inverse CDFs using neural networks.

= Both methods achieve state-of-the-art accuracy, surpassing traditional
non-parametric techniques.

= [TML is a powerful tool when only the PDF is known, as it requires no
numerical integration to generate training data.

= |[PIL acts as an advanced, physics-informed interpolation method, delivering
extremely high accuracy when CDF observations can be generated.

Future Work

= Exploring approximation functions (e.g., polynomials) whose inverses are directly
computable, to also obtain a CDF approximation.

= Extending the methodology to high-dimensional distributions, which poses
significant conceptual challenges regarding inter-variable correlations.
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