Approximation of the Inverse CDF using Transport Map

Dawen Wu^{1,2} Ludovic Chamoin³

¹CNRS@CREATE, Singapore

²National University of Singapore

³Université Paris-Saclay, France

In memory of Prof. Stéphane Bressan

Problem Statement

Many important probability distributions, such as the normal distribution, lack closedform analytical solutions for their inverse cumulative distribution functions (inverse CDFs or quantile functions).

Traditional non-parametric methods rely on numerical integration and interpolation, which can be computationally expensive and limit accuracy.

Goal: Develop novel, more accurate **parametric methods** to approximate the inverse CDF.

Background: Transport Maps

A transport map T creates a coupling between a simple reference distribution (e.g., standard uniform) and a complex target distribution.

Key Insight: For a 1D problem, if the reference distribution is Uniform(0,1), the optimal transport map T is exactly the inverse CDF (Φ^{-1}) of the target distribution.

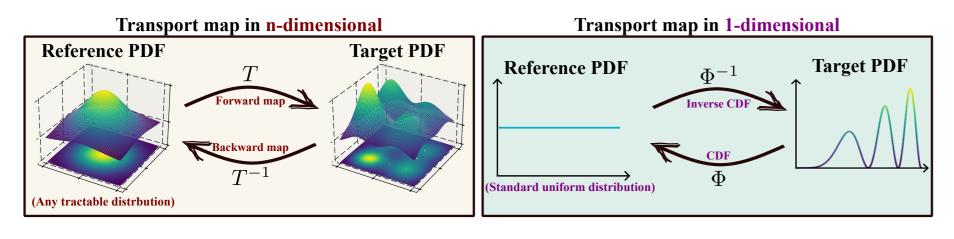


Figure 1. Left: General n-dimensional transport map. Right: In 1D, the map from a uniform distribution to a target distribution is the inverse CDF.

Proposed Methods

We propose a composite approximation function combining a **logit function** with a **neural network (NN)**:

$$\hat{\Phi}_{\text{inv}}(u; w) = N\left(\log\left(\frac{u}{1-u}\right); w\right) \approx \Phi^{-1}(u)$$

We introduce two distinct training strategies for the NN weights w.

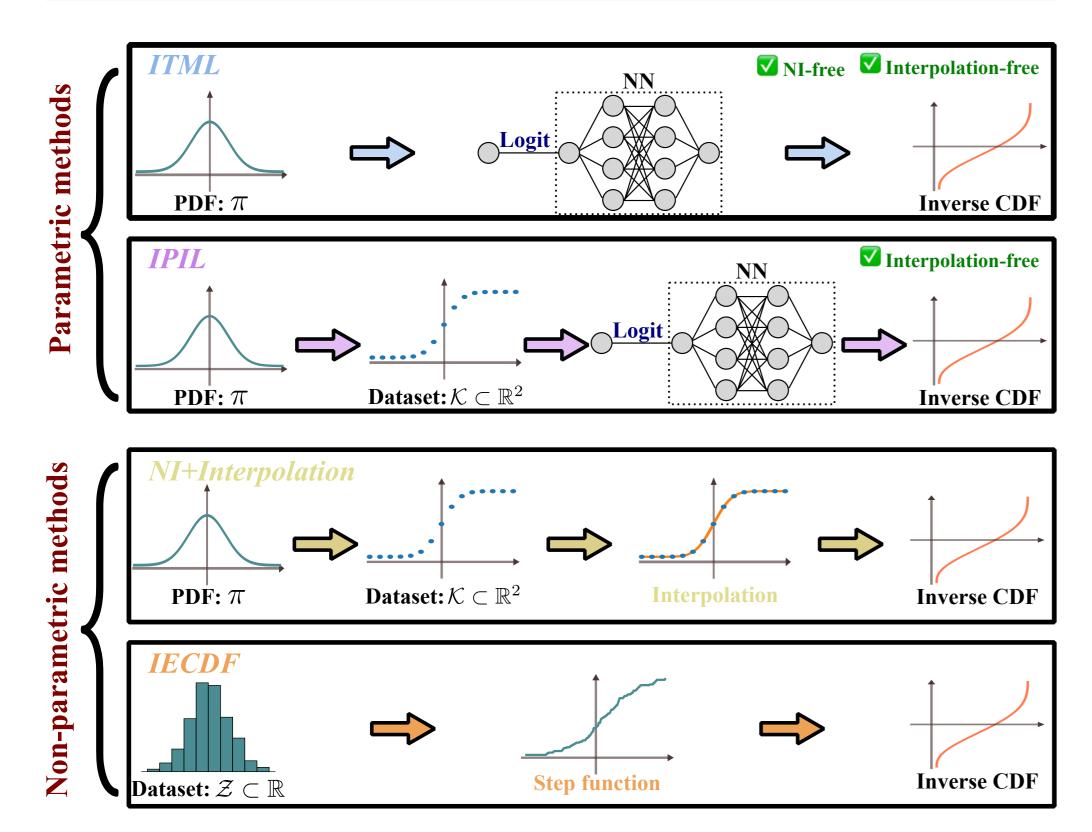


Figure 2. Overview of our parametric methods (ITML, IPIL) versus existing non-parametric approaches. Our methods avoid interpolation and ITML is also free from numerical integration.

Method 1: Inverse Transport Map Learning (ITML)

This approach is derived from the transport map theory by minimizing the Kullback-Leibler (KL) divergence.

- Loss Function: Based on minimizing the KL divergence between the reference and the transformed distribution.
- Key Advantage: It directly uses the Probability Density Function (PDF) $\pi(z)$ and is completely free from numerical integration (NI-free) and interpolation.
- **Constraint:** The derivative of the approximation must be positive to ensure invertibility.

Method 2: Inverse Physics-informed Learning (IPIL)

This approach formulates the problem as solving a differential equation using a Physics-Informed Neural Network (PINN).

- Governing Equation: The derivative of our approximation should match the derivative of the true inverse CDF, which is $1/\pi(\Phi^{-1}(u))$.
- Training Data: Requires a dataset of (u,z) pairs, where $u=\Phi(z)$ is computed via numerical integration.
- **Key Advantage:** Leverages the underlying physics (the PDF) to achieve high accuracy and avoids explicit interpolation (**Interpolation-free**).

Experiments and Results

We validated our methods on standard normal, Beta, Gamma, and an abstract distribution. The NN used has 3 hidden layers with 10 neurons each.

Case Study: Standard Normal Distribution

- ITML uses only the PDF, $\pi(z) \propto e^{-z^2/2}$.
- IPIL and other baseline methods use a training set of 10,000 (u,z) points.
- Performance is evaluated on a test set of 1 million points.

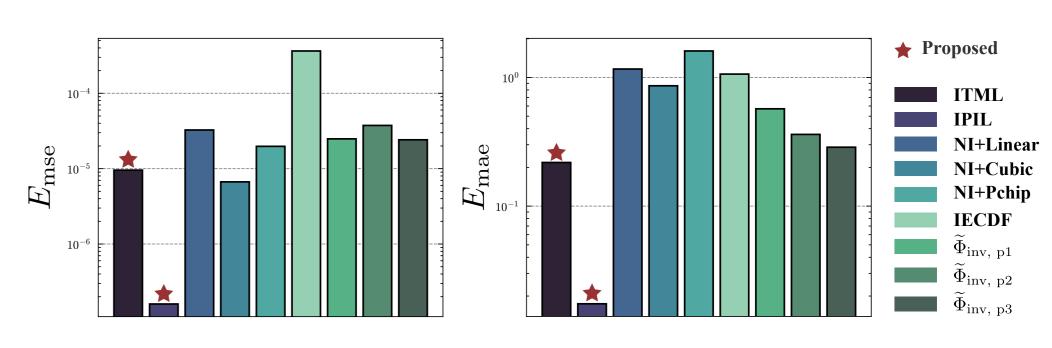


Figure 3. Performance comparison on the standard normal distribution. Our proposed methods (ITML, IPIL, marked with \star) are compared against various existing methods, including numerical integration with interpolation (NI+...) and explicit approximations ($\Phi_{\text{inv, p}^*}$).

Key Findings:

- As shown in the figure, **IPIL** achieves the lowest Mean Squared Error (E_{mse}), outperforming all other methods.
- IPIL and ITML show the best performance in Maximum Absolute Error (E_{mae}), indicating a robust approximation across the entire domain.
- Both proposed methods significantly outperform traditional non-parametric approaches like NI+Interpolation and the Inverse Empirical CDF (IECDF).
- Similar superior performance was observed for Beta and Gamma distributions.

Conclusions

- We introduced two novel parametric methods, **ITML** and **IPIL**, for approximating inverse CDFs using neural networks.
- Both methods achieve state-of-the-art accuracy, surpassing traditional non-parametric techniques.
- ITML is a powerful tool when only the PDF is known, as it requires no numerical integration to generate training data.
- IPIL acts as an advanced, physics-informed interpolation method, delivering extremely high accuracy when CDF observations can be generated.

Future Work

- Exploring approximation functions (e.g., polynomials) whose inverses are directly computable, to also obtain a CDF approximation.
- Extending the methodology to high-dimensional distributions, which poses significant conceptual challenges regarding inter-variable correlations.

Reference

- Michael Giles and Oliver Sheridan-Methven. Analysis of nested multilevel monte carlo using approximate normal random variables. SIAM/ASA Journal on Uncertainty Quantification, 2022.
- Tarek A El Moselhy and Youssef M Marzouk. Bayesian inference with optimal maps. Journal of Computational Physics, 2012.
- George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 2021.