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Introduction
Constrained nonlinear optimization problems (CNLP)

The standard CNLP has the following form
min

x
f (x)

s.t.
g(x) ≤ 0,

Ax = b,

(1)

The standard CNLP can be classified into different categories based on
the properties of the objective and constraint functions. For example:

When both f (x) and g(x) are both linear, it is called linear
programming problem.
When the f (x) is quadratic, and the g(x) is linear , it is called
quadratic programming problem.
When both f (x) and g(x) are convex , it is called convex
optimization problem.
When either f (x) or g(x) is non-smooth, it is called non-smooth
optimization problem.
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Introduction
Contributions of OINN

The contributions of our proposed OINN can be summarized as follows

A deep learning approach, in the form of feed-forward neural
networks, is proposed to solve CNLPs, which has never been done
before in the long history of nonlinear programming.
The CNLP solution problem becomes a neural network training
problem. Such that, we can solve the CNLP by only deep learning
infrastructure without using any standard optimization solvers or
numerical integration solvers.
In some examples, OINN outperforms conventional approaches in
terms of accuracy and computational time.
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Preliminarie
Neurodynamic optimization

Neurodynamic optimization is a method that model a CNLP by an
ODE system.

Consider a CNLP with an optimal solution y∗. A neurodynamic approach
establishes a dynamical system in the form of a first-order ODE system,
i.e., dy

dt = Φ(y).

The state solution y(t) of this ODE system is expected to converge to
the optimal solution of the CNLP, i.e., limt→∞ y(t) = y∗.
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Preliminarie
Neural network as ODE/PDE solution

The general differential equation can be defined as

G
(
x, f (x), ∇f (x), ∇2f (x)

)
= 0, x ∈ D (2)

The trail solution to solve the differential equation (2) is defined as

ft(x) = A(x) + F (x, N(x, w)), (3)

where A(·) and F (·, ·) are used to ensure the satisfaction of
initial/boundary condition.

The training objective is defined as

min
w

∫
x∈D

G
(
x, ft (x, w) , ∇ft (x, w) , ∇2ft (x, w)

)2 (4)

.

The training is achieved by performing gradient descent on (4) with
respect to the NN model parameter w.
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Preliminarie
Literature review

(A): Neurodynamic optimization

Authors Problems

Hopfield et al.(1986) Linear programming problems
(Hopfield network)

Kennedy et al.(1988) Nonlinear programming problems
based on the penalty method

Xia et al.(2007) Nonlinear projection equations
Qin et al.(2014) Nonsmooth convex optimization problems

Xu et al.(2020) Constrained pseudoconvex
programming problems

(B): NN as solution of ODE/PDE:

Authors Methods
Dissanayake et al (1994) initially used a nn as an approximate solution to PDE
Lagaris et al. (1998) constructed a nn to satisfy an initial/boundary condition
Han et al. (2018) High dimensional PDE
Sirignano et al (2018) DGM
Raissi et al. (2019) PINN

These two lines of research are in two different communities. In a nutshell, Our
OINN is a combination of these two lines of research, which have never
interacted in the last 30 years

Dawen Wu



OINN
OINN model

The OINN model

IVPCNLP

1. ODE system:

2. Initial point:

3. Time range: 

Neurodynamic
optimization

OINN solution to the CNLP OINN solution to the IVP

1. Initial point:

2. Time range: 

3. Projection:

The CNLP is first reformluated as an IVP by Neurodynamic
optimization.
The OINN model is defined as y (t; w) = y0 + (1 − e−t)N (t; w),
where N (t; w) is a fully-connected network. The multiplier
(1 − e−t) is used to ensure the satisfaction of the initial condition.
The endpoint y (T ; w) is an approximate solution to the CNLP.
The OINN model itself y (T ; w) is an approximate state solution to
the IVP.
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OINN
OINN training

The loss function is defined as

L(t, w) = e−γ∗t
∥∥∥∥∂y(t; w)

∂t − Φ(y(t; w))
∥∥∥∥ , (5)

where the Φ(·) is the ODE system related to the CNLP.

The objective function is an integral of L(t, w) over the time range
[0, T ]

E (w) =
∫ T

0
L(t, w)dt. (6)

At each iteration, the OINN model train on the batch loss, defined as

L(T, w) = 1
|T|

∑
t∈T

L(t, w), (7)

where T is a set of time that sampled uniformly from the time range
[0, T ]. L(T, w) is an unbiased estimate of E (w).
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OINN
OINN training algorithm

The epsilon metric ϵ is used to evaluate how well the OINN prediction
to the CNLP.

Throughout the training process, the algorithm maintains the lowest
epsilon value, namely ϵbest, representing the best prediction to the CNLP,
and the corresponding model parameter is saved.
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OINN
Comparison between OINN and numerical integration methods

Training iteration progression
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Numerical intergration method

OINN training(A)

(B)

Collocation point progression
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OINN can provide approximations for the IVP and the CNLP at any
training iteration, while the numerical method can only produce solutions
at the end of the program.
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Numerical results
Example 1: Convex-smooth standard CNLP

Example 1. Consider the following convex-smooth standard CNLP:

min
x

f (x) = x2
1 + 2x2

2 + 2x1x2 − 10x1 − 12x2

s.t.
g1(x) = x1 + 3x2 − 8 ≤ 0
g2(x) = x2

1 + x2
2 + 2x1 − 2x2 − 3 ≤ 0

0 ≤ x ≤ 2.

(8)

We define G(y) as

G(y) =
[

∇f (x) + ∇g(x)T u
−g(x)

]
, (9)

where y = [x1, x2, u1, u2]T ; x1, x2 are decision variables, and u1, u2 are
dual variables.

The CNLP can be reformulated as the following nonlinear projection
equation

PΩ(y − G(y)) = y, (10)
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Numerical results
Example 1: Convex-smooth standard CNLP

The ODE system models this NPE

dy
dt = −G (PΩ(y)) + PΩ(y) − y, (11)

The ODE system together with the initial point y0 = [0, 0, 0, 0] and time
range [0, 10] form an IVP as follow

dy
dt = −G (PΩ(y)) + PΩ(y) − y, y0 = [0, 0, 0, 0], t ∈ [0, 10] (12)

An OINN model, y(t; w) t ∈ [0, 10], is built as an approximate state
solution to this IVP (12).

Its endpoint PΩ (y(10; w)) is an approximate solution to the NPE
(10), hence solving Example 1.
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Numerical results
Example 1: Convex-smooth standard CNLP

(A) (B)

(C)

Iteration: 100 Iteration: 10000 Iteration: 50000Iteration: 0
(D)

Collocation
point: 5000

Collocation
point: 25000

Collocation
point: 50000

Collocation
point: 0

Figure: Example 1: Convex-smooth standard CNLP (A) The loss versus
the number of iterations. (B) The epsilon value versus the number of
iterations. (C) The solving process of the OINN model (D) The solving
process of the numerical integration method
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Numerical results
Example 1: Convex-smooth standard CNLP

Index OINN Numerical integration method
Iteration Solution Collocation point Solution

Example 1

0 [0.05, 1.34, 0.75, 0.49] 0 [0.00, 0.00, 0.00, 0.00]
10 [0.84, 2.00, 0.00, 0.00] 10 [0.02, 0.02, 0.00, 0.00]
100 [1.15, 2.00, 0.00, 0.00] 100 [0.19, 0.23, 0.00, 0.00]
1000 [1.19, 2.00, 0.00, 0.00] 1000 [1.36, 1.42, 0.00, 0.00]
10000 [1.00, 2.00, 0.00, 1.00] 10000 [1.01, 2.00, 0.00, 0.97]
50000 [1.00, 2.00, 0.00, 1.00] 50000 [1.00, 2.00, 0.00, 1.00]

Table: Example 1, Approximate solutions during solving

Both OINN and the numerical integration method converge to the
same optimal solution.
OINN is able to give a good prediction in early stage of training. For
instance, at the 100th iteration, the prediction given by OINN is
already very close to the optimal value.
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Numerical results
Example 2: pseudoconvex nonsmooth standard CNLP

Example 2 Consider the following pseudoconvex nonsmooth CNLP

min
x

f (x) = x1 + x2 + e|x2−1| − 40
(x1 + x2 + x3)2 + 3

s.t.
g1(x) = −3x1 + 2x2 − 5 ≤ 0
g2(x) = x2

1 + x2 − 3 ≤ 0
h(x) = x1 + 2x2 + x3 − 2 = 0

(13)

This example is difficult to solve by standard optimization solvers
or numerical integration solvers because of its pseudo-convex and
non-smooth properties.
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Numerical results
Example 2: pseudoconvex nonsmooth standard CNLP

Index OINN Numerical integration method
Iteration Objective value ↓ Collocation point Objective value ↓

Example 2

0 -11.757 0 -7.871
10 -11.757 10 -7.871
100 -11.861 100 -7.871
1000 -11.914 1000 -7.871
10000 -11.992 10000 inf
50000 -11.992 50000 -11.985

Table: Comparison of objective values

OINN is able to reach a lower objective value, i.e. OINN finds a
better solution than the numerical integration method.

Dawen Wu



Numerical results
Example 2: pseudoconvex nonsmooth standard CNLP

Index OINN Numerical integration methods

Iteration CPU time Collocation
point

RK45
CPU
time

RK23
CPU
time

DOP853
CPU
time

Radau
CPU
time

BDF
CPU
time

LSODA
CPU
time

Example 2

10 202 ms 10 1350 ms 860 ms 3470 ms 1000 ms Fail 157 ms
100 893 ms 100 1740 ms 1090 ms 4620 ms 1330 ms Fail 154 ms
1000 8.47 s 1000 2.14s 1.32s 5.68 s 1.47 s Fail 188 ms
10000 1min 20s 10000 1min 25s 5min 5s 34min 29s Fail Fail 4h 4min 35s
50000 7min 55s 50000 14min 29s 25min 14s 1h 43min 28s Fail Fail Fail

Table: Comparison of computational time

RK45, RK23, DOP853, Radau, BDF and LSODA are six different
numerical integration methods used for comparison.
OINN outperforms all these six methods in terms of
computational CPU time, i.e., OINN takes 7min 55s while RK45
takes at best 14min 29s.
The three methods, Radau, BDF, and LSODA, fail to solve this
problem.
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Conclusion and future directions
Conclusions:

In this paper, we presented a deep learning approach to solve
constrained nonlinear optimization problems (CNLP), namly OINN.
OINN is a combination of two line of research, i.e., Neurodynamic
optimization and neural network for solving PDE.
We propose a dedicated algorithm to train the OINN model toward
solving the CNLP.
We demonstrate the effectiveness of OINN with two examples.

Future directions:

From the problem side, OINN can be extended to many other
optimization problems by working with other neurodynamic
approaches.
From the methodological side, we can further improve the
computational performance of OINN by incorporating research from
the broad machine learning community.
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