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Introduction
Literature Review

Games:
Authors Year Games Main results
von Neumann 1928 two-player Sa.ddle point
Zero-sum game existence
n-players Nash equilibrium
Nash 1950 P& .
genral-sum game existence
two-player .
Saddle point
Charnes 1953  zero-sum game ) pol
. . . existence
with linear constraints
two-player .
. . Saddle point
Singh & Lisser 2019 zero-sum game . pol
. . existence
with chance constraints
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Introduction
Literature Review

Neurodynamic optimization approach or Dynamical neural network:

Authors Problems

. Linear programming problems
Hopfield et al.(1986) (Hopfield network)
Nonlinear programming problems
based on the penalty method
Xia et al.(2007) Nonlinear projection equations
Xu et al.(2020) Constrame.d pseudoconvex

programming problems

Kennedy et al.(1988)
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Introduction
Problem formulation
Charnes(1953) studied the two-player zero-sum game problem with

linear constrained.

The LP formulation:

max x " Ay myin xT Ay

s.t. s.t.
Bx<b Dy > d
17x=1 17y =
x 20, y 20,
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Introduction
Problem formulation
Charnes(1953) studied the two-player zero-sum game problem with

linear constrained.

The LP formulation:

max x " Ay min x T Ay
X y
s.t. s.t.
Bx<b Dy > d
].TX = 1 ]_Ty ==
x 20, y 20,
v
x € R", y € R™ ... decision vector

x* € R", y* € R™ ... Saddle point of the above linear programs
B € RP*" b e RP ... The linear constrant for player 1
D e R9*™ d € R9 ... The linear constrant for player 2
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Introduction

Problem formulation-Chance constraint programming

Consider the case of stocastic linear constraints

From linear constrained to linear individual chance constraints:

Bx < b= P{Bix< by} >0}, VkeET J

Dy >d= P{Dl'y >dj}>a?, VIl J

o i=A{1,...,p}, Jo={1,...,q} are the index set of constraints.
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Problem formulation-Chance constraint programming

Consider the case of stocastic linear constraints

From linear constrained to linear individual chance constraints:

Bx < b= P{Bix< by} >0}, VkeET

S

Dy >d= P{Dl'y >dj}>a?, VIl J

o i=A{1,...,p}, Jo={1,...,q} are the index set of constraints.

@ Now, each row vector By and D, follows an elliptical distribution i.e.
Bl ~ Ellip,, (ui,ii,(pi) and D" ~ Ellip,, (u%,Z%,gpf).
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Introduction

Problem formulation-Chance constraint programming

Consider the case of stocastic linear constraints

From linear constrained to linear individual chance constraints:

Bx < b= P{Bix< by} >0}, VkeET

S

Dy >d= P{Dl'y >dj}>a?, VIl J

o Ji={1,...,p}, o ={1,...,q} are the index set of constraints.
@ Now, each row vector By and D, follows an elliptical distribution i.e.
By ~ Ellip, (144, X}, %) and D) ~ Ellip, (13, X7, 7).

o a! = (a})kes, and a® = (a?)/c g, are confidence levels.
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Introduction

Problem formulation-stochastic two-player zero-sum game problem
From two-player zero-sum game with linear constraint to the stochastic
two-player zero-sum game problem.

Here is the stochastic optimization problem we are going to solve,
denoted as G(«):

max x " Ay
X

s.t.
P{Byx < by} > ai, Vk € J1
1"x=1
x >0,

min x " Ay

y

s.t.
P{D{'y >dj}>a7, Vieh
17y =1
y > 0.
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Stochastic two-player zero-sum game
Assumptions

Denote the feasible strategy sets of the two player as S; (al) and
S5 (a?), respectivly.

Assumption 1

@ The set Si(al) is strictly feasible, i.e., there exists an x € R™ which
is a feasible point of Si(a') and the inequality constraints of S;(al)
are strictly satisfied by x.

@ The set Sy(a?) is strictly feasible, i.e., there exists an y € R™ which
is a feasible point of S(a?) and the inequality constraints of S(a?)
are strictly satisfied by y.
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Stochastic two-player zero-sum game
Theorem: Saddle point existence

The saddle point existence theorem of G(«):

Theorem 1 (Singh & Lisser (2019))

Consider a stochastic two-player zero-sum game G(«). Let the row
vectors By ~ Ellip,,, (uk, Xk, ¢}) . k € J1, and
Dy ~ Ellip, (17,23, 9?),1 € Jo. For all k and I, ¥} = 0 and X7 > 0.

Then, there exists a saddle point equilibrium for the game G(«) for all
a € (0.5, 1]t x (0.5, 1]%.
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Stochastic two-player zero-sum game
The SOCP reformulation

Obtaining the optimal mixed strategy y* of Player 2 can be
reformulated as the following SOCP:

minyﬂ/l_’((;i)kejl’/\1 v+ ke, Mebx
s.t.

(MAY = X keq bk = 2kes ():k)% 0 < viln
) () -y + Vg (@) ||y < —di Vies

@) [lok]l < Mg’ (k). Yhke R

@17y =

(5)y =0

(6)\L >0, Vken

Dawen Wu



Stochastic two-player zero-sum game
The SOCP reformulation

Obtaining the optimal mixed strategy x* of Player 1 can be
reformulated as the following SOCP:

maxx,va(af)lejz,v V2D e g AT
s.t.

(1)ATx — z,ejz N = Tie s, (22)% 62 > v21,
D) (2)xTuh + V5! (o} H (£1)? H < by, Vked

3) |\52H <AV (of), VIER

(4)1 X =

(5)x=0

(6)X2 >0, VIe T
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Stochastic two-player zero-sum game
Theorem: SOCP reformulation
SOCP reformulation theorem:

Theorem 2 (Singh & Lisser (2019))

Consider a stochastic two-player zero-sum game G(«). Let the row
vector BY ~ Ellip , (44, X}, ¢k) » k € J1, where ¥ - 0, and the row
vector D} ~ Ellip, (u2,%7,¢?7) ,1 € J» where 2 - 0. Let Assumption 1
holds. Then, for a given o € (0.5,1]P x (0.5,1]9, (x*,y*) is a saddle
point equilibrium of the game G(«) if and only if

(y*, vl (6,{*),(61 ,)\1*) and (x*, v, (5,2*)/€J2 ,)\2*) are optimal
solutions of primal-dual pair of SOCPs (P) and (D), respectively.

@ The saddle point (x*, y*) of the game G(«) is contained in the
optimal solution of the SOCPs (P) and (D).

@ (P) and (D) are a primal-dual pair of SOCPs.
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Neurodynamic optimization approach
KKT conditions

The SOCP (P) can be written as:
min 7 (s)

s

s.t. (1)
g(s) <0,

The related KKT conditions are:

°s= (y, vh (00 ke ,)\1) is the primal variable.

o u= (X, v, ()1 ,)\2> is the dual variable.

@ The saddle point (x*, y*) can be obtained by solving the KKT
conditions (2).



Neurodynamic optimization approach
ODE system

Here, we introduce the time variable t, and s(t) and u(t) become time
dependent functions.

Let r(t) contain s(t), u(t), i.e.,

r(t) = (s(t), u(t)) = (y(t), v(t), (t), A(), u(t)) "

We use this following ODE system, % = ®(r), to solve the primal-dual
pair of SOCPs, (P) and (D).
& — (V£ + Vgl (u+g)*t)
P - (VA + Ve, z +8)")
5 % =| —(Vh+Vgl(ut+g)) |, (3)
G (VfHVg»(Hg ")
Fr (u+g)"
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Neurodynamic optimization approach
Theorems

Theorem 3

The point r* = (y*,v*,6*, \*,u*)7T is the equilibrium point of the ODE
system (3) if and only if it is also the KKT point of the SOCP problem.

Lemma 4

The equilibrium point of the proposed ODE system (3) is unique.

Theorem 5

The equilibrium point r* = (y*,v*, 8%, A\*, u*) of the proposed ODE
system (3) is globally asymptotically stable.

@ Theorem 3: The equilibrium point of the ODE system coincides with
the optimal solution of the SOCPs.

@ Theorem 5: Starting with any initial point (o, o), the state solution
r(t) converges to the optimal solution r* as the time go to infinity,
ie., limesoo r(t) = r*.
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Neurodynamic optimization approach

Workflow

The flowchart summarize how we obtain the saddle point (x*, y*) of a
stochastic two-player zero-sum game using neurodynamic optimization

approach.
// \ //
[ ‘A stochastic two- \ ( Initial point Interval \
1 player zero-sum
: game o [0,T]

he SOCP
problem

il

The DNN model

| S—
Numerical

methods

|

J‘

—

Solution r(t)

I

4. The DNN model Nash equilibrium
containted in r(T)

|

Formation to DNN models Solution of DNN models
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Numerical results

Solution process
We compare our neurodynamic optimization approach with the
conventional approach, the SCS method.
Left: The SCS method. The objective value with respect to iterations.

Right: The neurodynamic approach. The objective value with respect to
time t of the ODE system.

- splitting conic solver — Dynamical neural network

Values
°
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|
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9

Iterations. t

The SCS method solve the problem in a Discrete manner. The
neurodynamic approach solve the problem in a Time-continuous manner.
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Numerical results
Error metric

The point (s, u) is an approximate KKT point with e-error if it satisfies

Hw )+ Vg (s H <e

luog(s)l < e, @
lg ()]l < e
-l <

e-error represents how well the solution (s, u) satisfy the KKT conditions.
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Numerical results

€ error
The e-error comparison between the SCS method and our neurodynamic

optimization approach:

KKT errors

0 300 600 900 1200 1500 1800 2100 2400
lterations/t

Figure: The x-axis represents the number of iterations (for the SCS method) or
the time t (for the Neurodynamic approach). The y-axis represents the ¢ error.

The SCS method may stop or become slow after some iterations. The
neurodynamic approach keep minimizing the e-error thanks to the global

convergence theorem.
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Numerical results

Comparasion between Neurodynamic, SCS and CVXOPT

Game Probability « Neurodynamic SCS CVXOPT
size distribution «a; «ap; CPUtime Value eError CPU time Value eError CPU time Value e-Error
Normal 0.8 08 179 459  0.12 0.015 503 820 0.031 4.39 0.00
4 4) 09 09 179 430 0.05 0.015 475 323 0.015 4.39 0.00
' Laplace 08 08 1.66 440 011 0.015 474 463 0.015 4.39 0.00
09 09 128 4.67  0.02 0.015 480 286 0.015 4.64 0.00
Normal 08 08 239 551 0.01 0.015 5.64  0.45 0.015 5.54 0.00
(10, 10) 09 09 267 578  0.09 0.015 580 0.25 0.015 5.88 0.00
Laplace 08 08 261 553  0.03 0.015 5.66  1.00 0.015 5.59 0.00
09 09 265 6.08  0.05 0.015 6.15 0.03 0.031 6.14 0.00
Normal 08 08 56.33 526 0.18 0.063 471 459 0.271 5.15 0.00
(50, 50) 09 09 6878 517  0.09 0.062 487 471 0.249 5.16 0.00
Laplace 0.8 08 5837 525 0.15 0.055 5.04 7.33 0.257 5.15 0.00
09 09 47.07 516 0.08 0.046 517 218 0.249 5.18 0.00
Normal 0.8 0.8 381.33 5.02  0.02 0.111 469 177 1.48 5.00 0.00
(100, 100) 09 09 369.88 499  0.04 0.105 497 156 1,59 S,QO O.QO
Laplace 0.8 0.8 319.04 5.00 0.02 0.109 482 1.63 Fa!Ied Fa!Ied Fa!Ied
09 09 359.95 5.04 0.04 0.109 499 1.84 Failed Failed  Failed
Normal 0.8 0.8 898451 497  0.03 0.283 475 5.14 10:45 4.96 O.QO
(200, 200) 09 09 8862.24 499 0.04 0.281 490 206 Fa!led Fa!led Fa!led
Laplace 0.8 0.8 8381.08 498 0.04 0.252 477 418 Failed Failed  Failed
09 09 1121882 500 0.05 0.265 496 094 Failed Failed  Failed

@ Pros: 1. Achieve a lower c-error 2. Solve the game of large
size.
e Cons: Time consuming.



Conclusion

@ In this paper, we studied a neurodynamic approach to solve a
two-player zero-sum game with stochastic linear constraints.

@ We show that the equilibrium point of the ODE system is the saddle
point for the game.

@ We show that the ODE system can converge to the saddle point of
the game.

@ We use this neurodynamic approach to solve the game of size up to
(200, 200).
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