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Introduction
Literature Review

Games:

Authors Year Games Main results

von Neumann 1928 two-player
zero-sum game

Saddle point
existence

Nash 1950 n-players
genral-sum game

Nash equilibrium
existence

Charnes 1953
two-player
zero-sum game
with linear constraints

Saddle point
existence

Singh & Lisser 2019
two-player
zero-sum game
with chance constraints

Saddle point
existence
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Introduction
Literature Review

Neurodynamic optimization approach or Dynamical neural network:

Authors Problems

Hopfield et al.(1986) Linear programming problems
(Hopfield network)

Kennedy et al.(1988) Nonlinear programming problems
based on the penalty method

Xia et al.(2007) Nonlinear projection equations

Xu et al.(2020) Constrained pseudoconvex
programming problems
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Introduction
Problem formulation

Charnes(1953) studied the two-player zero-sum game problem with
linear constrained.

The LP formulation:

max
x

xT Ay
s.t.

Bx ≤ b
1T x = 1
x ≥ 0,



min
y

xT Ay

s.t.
Dy ≥ d
1T y = 1
y ≥ 0,

x ∈ Rn, y ∈ Rm . . . decision vector
x∗ ∈ Rn, y∗ ∈ Rm . . . Saddle point of the above linear programs
B ∈ Rp×n, b ∈ Rp . . . The linear constrant for player 1
D ∈ Rq×m, d ∈ Rq . . . The linear constrant for player 2
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Introduction
Problem formulation-Chance constraint programming

Consider the case of stocastic linear constraints

From linear constrained to linear individual chance constraints:

Bx ≤ b =⇒ P {Bw
k x ≤ bk} ≥ α1

k , ∀k ∈ J1

Dy ≥ d =⇒ P {Dw
l y ≥ dl} ≥ α2

l , ∀l ∈ J2

J1 = {1, . . . , p}, J2 = {1, . . . , q} are the index set of constraints.
Now, each row vector Bk and Dl follows an elliptical distribution i.e.
Bw

k ∼ Ellipm
(
µ1

k , Σ1
k , φ1

k
)

and Dw
l ∼ Ellipn

(
µ2

l , Σ2
l , φ2

l
)
.

α1 = (α1
k)k∈J1 and α2 = (α2

l )l∈J2 are confidence levels.
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Introduction
Problem formulation-stochastic two-player zero-sum game problem

From two-player zero-sum game with linear constraint to the stochastic
two-player zero-sum game problem.

Here is the stochastic optimization problem we are going to solve,
denoted as G(α):

max
x

xT Ay
s.t.

P {Bw
k x ≤ bk} ≥ α1

k , ∀k ∈ J1

1T x = 1
x ≥ 0,



min
y

xT Ay

s.t.
P {Dw

l y ≥ dl} ≥ α2
l , ∀l ∈ J2

1T y = 1
y ≥ 0.
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Stochastic two-player zero-sum game
Assumptions

Denote the feasible strategy sets of the two player as S1
(
α1)

and
S2

(
α2)

, respectivly.

Assumption 1

1 The set S1(α1) is strictly feasible, i.e., there exists an x ∈ Rn which
is a feasible point of S1(α1) and the inequality constraints of S1(α1)
are strictly satisfied by x.

2 The set S2(α2) is strictly feasible, i.e., there exists an y ∈ Rm which
is a feasible point of S2(α2) and the inequality constraints of S2(α2)
are strictly satisfied by y.

Dawen Wu



Stochastic two-player zero-sum game
Theorem: Saddle point existence

The saddle point existence theorem of G(α):

Theorem 1 (Singh & Lisser (2019))
Consider a stochastic two-player zero-sum game G(α). Let the row
vectors Bw

k ∼ Ellipm
(
µ1

k , Σ1
k , φ1

k
)

, k ∈ J1, and
Dw

l ∼ Ellipn
(
µ2

l , Σ2
l , φ2

l
)

, l ∈ J2. For all k and l, Σ1
k ≻ 0 and Σ2

l ≻ 0.
Then, there exists a saddle point equilibrium for the game G(α) for all
α ∈ (0.5, 1]J1 × (0.5, 1]J2 .
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Stochastic two-player zero-sum game
The SOCP reformulation

Obtaining the optimal mixed strategy y∗ of Player 2 can be
reformulated as the following SOCP:

(P)



miny ,v1,(δ1
k)k∈J1

,λ1 v1 +
∑

k∈J1
λ1

kbk

s.t.
(1)Ay −

∑
k∈J1

λ1
kµ1

k −
∑

k∈J1

(
Σ1

k
) 1

2 δ1
k ≤ v11m

(2) − yT µ2
l + Ψ−1

ξ2
l

(
α2

l
) ∥∥∥(

Σ2
l
) 1

2 y
∥∥∥ ≤ −dl , ∀l ∈ J2

(3)
∥∥δ1

k
∥∥ ≤ λ1

kΨ−1
ξ1

k

(
α1

k
)

, ∀k ∈ J1

(4)1T y = 1
(5)y ≥ 0
(6)λ1

k ≥ 0, ∀k ∈ J1
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Stochastic two-player zero-sum game
The SOCP reformulation

Obtaining the optimal mixed strategy x∗ of Player 1 can be
reformulated as the following SOCP:

(D)



maxx ,v2,(δ2
l )l∈J2

,λ2 v2 +
∑

l∈J2
λ2

l dl

s.t.
(1)AT x −

∑
l∈J2

λ2
l µ2

l −
∑

l∈J2

(
Σ2

l
) 1

2 δ2
l ≥ v21n

(2)xT µ1
k + Ψ−1

ξ1
k

(
α1

k
) ∥∥∥(

Σ1
k
) 1

2 x
∥∥∥ ≤ bk , ∀k ∈ J1

(3)
∥∥δ2

l
∥∥ ≤ λ2

l Ψ−1
ξ2

l

(
α2

l
)

, ∀l ∈ J2

(4)1T x = 1
(5)x ≥ 0
(6)λ2

l ≥ 0, ∀l ∈ J2

Dawen Wu



Stochastic two-player zero-sum game
Theorem: SOCP reformulation

SOCP reformulation theorem:

Theorem 2 (Singh & Lisser (2019))
Consider a stochastic two-player zero-sum game G(α). Let the row
vector Bw ∼ Ellip m

(
µ1

k , Σ1
k , φ1

k
)

, k ∈ J1, where Σ1
k ≻ 0, and the row

vector Dw
l ∼ Ellipn

(
µ2

l , Σ2
l , φ2

l
)

, l ∈ J2 where Σ2
l ≻ 0. Let Assumption 1

holds. Then, for a given α ∈ (0.5, 1]p × (0.5, 1]q, (x∗, y∗) is a saddle
point equilibrium of the game G(α) if and only if(

y∗, v1∗,
(
δ1∗

k
)

k∈J1
, λ1∗

)
and

(
x∗, v2∗,

(
δ2∗

l
)

l∈J2
, λ2∗

)
are optimal

solutions of primal-dual pair of SOCPs (P) and (D), respectively.

The saddle point (x∗, y∗) of the game G(α) is contained in the
optimal solution of the SOCPs (P) and (D).
(P) and (D) are a primal-dual pair of SOCPs.
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Neurodynamic optimization approach
KKT conditions

The SOCP (P) can be written as:

min
s

f (s)

s.t.
g(s) ≤ 0,

(1)

The related KKT conditions are:

∇f (s) + ∇g(s)T u = 0
g(s) ≤ 0, uT ≥ 0, uT g(s) = 0

(2)

s =
(

y , v1,
(
δ1

k
)

k∈J1
, λ1

)
is the primal variable.

u =
(

x , v2,
(
δ2

l
)

l∈J2
, λ2

)
is the dual variable.

The saddle point (x∗, y∗) can be obtained by solving the KKT
conditions (2).
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Neurodynamic optimization approach
ODE system

Here, we introduce the time variable t, and s(t) and u(t) become time
dependent functions.

Let r(t) contain s(t), u(t), i.e.,
r(t) = (s(t), u(t)) = (y(t), v(t), δ(t), λ(t), u(t))T .

We use this following ODE system, dr
dt = Φ(r), to solve the primal-dual

pair of SOCPs, (P) and (D).

dr
dt =


dy
dt
dv
dt
dδ
dt
dλ
dt
du
dt

 =


−

(
∇fy + ∇gT

y (u + g)+)
−

(
∇fv + ∇gT

v (u + g)+)
−

(
∇fδ + ∇gT

δ (u + g)+)
−

(
∇fλ + ∇gT

λ1(u + g)+)
(u + g)+ − u

 , (3)

Dawen Wu



Neurodynamic optimization approach
Theorems

Theorem 3
The point r∗ = (y∗, v∗, δ∗, λ∗, u∗)T is the equilibrium point of the ODE
system (3) if and only if it is also the KKT point of the SOCP problem.

Lemma 4
The equilibrium point of the proposed ODE system (3) is unique.

Theorem 5

The equilibrium point r∗ = (y∗, v∗, δ∗, λ∗, u∗) of the proposed ODE
system (3) is globally asymptotically stable.

Theorem 3: The equilibrium point of the ODE system coincides with
the optimal solution of the SOCPs.
Theorem 5: Starting with any initial point (t0, r0), the state solution
r(t) converges to the optimal solution r∗ as the time go to infinity,
i.e., limt→∞ r(t) = r∗.
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Neurodynamic optimization approach
Workflow

The flowchart summarize how we obtain the saddle point (x∗, y∗) of a
stochastic two-player zero-sum game using neurodynamic optimization
approach.
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Numerical results
Solution process

We compare our neurodynamic optimization approach with the
conventional approach, the SCS method.

Left: The SCS method. The objective value with respect to iterations.

Right: The neurodynamic approach. The objective value with respect to
time t of the ODE system.

The SCS method solve the problem in a Discrete manner. The
neurodynamic approach solve the problem in a Time-continuous manner.
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Numerical results
Error metric

The point (s, u) is an approximate KKT point with ϵ-error if it satisfies∥∥∥∇f (s) + ∇g (s)T u
∥∥∥ ≤ ϵ,

||u ◦ g(s)|| ≤ ϵ,∥∥g (s)+
∥∥ ≤ ϵ,

∥u−∥ ≤ ϵ,

(4)

ϵ-error represents how well the solution (s, u) satisfy the KKT conditions.
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Numerical results
ϵ error

The ϵ-error comparison between the SCS method and our neurodynamic
optimization approach:

Figure: The x-axis represents the number of iterations (for the SCS method) or
the time t (for the Neurodynamic approach). The y-axis represents the ϵ error.

The SCS method may stop or become slow after some iterations. The
neurodynamic approach keep minimizing the ϵ-error thanks to the global
convergence theorem.
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Numerical results
Comparasion between Neurodynamic, SCS and CVXOPT

Game
size

Probability
distribution

α Neurodynamic SCS CVXOPT
α1 α2 CPU time Value ϵ-Error CPU time Value ϵ-Error CPU time Value ϵ-Error

(4, 4)
Normal 0.8 0.8 1.79 4.59 0.12 0.015 5.03 8.20 0.031 4.39 0.00

0.9 0.9 1.79 4.30 0.05 0.015 4.75 3.23 0.015 4.39 0.00

Laplace 0.8 0.8 1.66 4.40 0.11 0.015 4.74 4.63 0.015 4.39 0.00
0.9 0.9 1.28 4.67 0.02 0.015 4.80 2.86 0.015 4.64 0.00

(10, 10)
Normal 0.8 0.8 2.39 5.51 0.01 0.015 5.64 0.45 0.015 5.54 0.00

0.9 0.9 2.67 5.78 0.09 0.015 5.80 0.25 0.015 5.88 0.00

Laplace 0.8 0.8 2.61 5.53 0.03 0.015 5.66 1.00 0.015 5.59 0.00
0.9 0.9 2.65 6.08 0.05 0.015 6.15 0.03 0.031 6.14 0.00

(50, 50)
Normal 0.8 0.8 56.33 5.26 0.18 0.063 4.71 4.59 0.271 5.15 0.00

0.9 0.9 68.78 5.17 0.09 0.062 4.87 4.71 0.249 5.16 0.00

Laplace 0.8 0.8 58.37 5.25 0.15 0.055 5.04 7.33 0.257 5.15 0.00
0.9 0.9 47.07 5.16 0.08 0.046 5.17 2.18 0.249 5.18 0.00

(100, 100)
Normal 0.8 0.8 381.33 5.02 0.02 0.111 4.69 1.77 1.48 5.00 0.00

0.9 0.9 369.88 4.99 0.04 0.105 4.97 1.56 1.59 5.00 0.00

Laplace 0.8 0.8 319.04 5.00 0.02 0.109 4.82 1.63 Failed Failed Failed
0.9 0.9 359.95 5.04 0.04 0.109 4.99 1.84 Failed Failed Failed

(200, 200)
Normal 0.8 0.8 8984.51 4.97 0.03 0.283 4.75 5.14 10.45 4.96 0.00

0.9 0.9 8862.24 4.99 0.04 0.281 4.90 2.06 Failed Failed Failed

Laplace 0.8 0.8 8381.08 4.98 0.04 0.252 4.77 4.18 Failed Failed Failed
0.9 0.9 11218.82 5.00 0.05 0.265 4.96 0.94 Failed Failed Failed

Pros: 1. Achieve a lower ϵ-error 2. Solve the game of large
size.
Cons: Time consuming.
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Conclusion

In this paper, we studied a neurodynamic approach to solve a
two-player zero-sum game with stochastic linear constraints.
We show that the equilibrium point of the ODE system is the saddle
point for the game.
We show that the ODE system can converge to the saddle point of
the game.
We use this neurodynamic approach to solve the game of size up to
(200, 200).
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