
Using CNN to solve two-player zero-sum games

Dawen Wu

2022 /05/20

• Two-player Zero-sum Games

• Convolutional neural networks

•

• Prediction of the saddle point value

• Solution of the saddle point strategy

• Numerical results

• Conclusion

Summary

2

Two-player Zero-sum Games

3

Preliminary 1: Problem formulation

Matrix games

Two-player Zero-sum games

4

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

Player 1

Player 2

−𝑎11 −𝑎12 −𝑎13

−𝑎21 −𝑎22 −𝑎23

−𝑎31 −𝑎32 −𝑎33

Player 1

Player 2

A two-player zero-sum game has the form:

• Two player : player 1 and player 2

• Finite actions :𝐴1 = 1,… , 𝑛 , 𝐴2 = {1,… ,𝑚}
• Payoff : When player 1 chooses action 𝑖 and

player 2 chooses action 𝑗 , players 1 and 2 receive

payoffs 𝑎𝑖𝑗 and −𝑎𝑖𝑗

The player 1’s payoff can be simplified as a matrix with

shape (n, m). 𝐴 = (𝑎𝑖𝑗)

The player 2’s payoff can be simplified as a matrix with

shape (n, m). −𝐴 = (−𝑎𝑖𝑗)

Since Player 2’s payoff is just the negative of the Player 1,

we can represent a two-player zero-sum game by the player

1’s matrix 𝐴 = (𝑎𝑖𝑗).

The payoff matrix A contain all the information of the

game, including both player action set and payoff.

3 5 7

6 1 2

-2 1 4

Player 1

Player 2

-3 -5 -7

-6 -1 -2

2 -1 -4

Player 1

Player 2

The general form An example

Mixed Strategy profile (𝑥, 𝑦)

Let x, y be player 1 and player 2 strategies. 𝑥 and 𝑦 should

be a discrete probability distribution, and satisfy

𝑒𝑛
𝑇𝑥 = 1, 𝑥 ≥ 0. 𝑒𝑚

𝑇 𝑦 = 1, 𝑦 ≥ 0,

Where 𝑒𝑛 is a n-dimensional all-ones vector .

Saddle point

Solving a two-player zero-sum game mean solve the

following equation

(𝑥∗, 𝑦∗) is called the saddle point strategy (Nash equilibrium).

𝑣∗ is called the saddle point value.

Minimax theorem

The minimax Theorem states that the saddle point always

exist for any two-player zero-sum games. (von Neumann,

1928)

Linear programming

The traditional and still state-of-the-art approach is to use

linear programming to find (𝑥∗, 𝑦∗)

The following primal-dual pair of linear programs can find

the saddle point of the game (Dantzig, 1963).

Two-player Zero-sum games

Solution concept

5

* * *v x Ay=

*v

()* *, arg max arg min AyT

x y

x y x

=

Convolutional neural network

Preliminary 2: Machine learning approach

6

A CNN model

Can be represented as a function 𝑓𝜃 𝐴 = ො𝑣

Components:

• Input 𝐴, is an array.

• Parameters 𝜃, are learnable parameters inside the CNN model.

• Output ො𝑣, is the CNN prediction. In most cases, ො𝑣 is a vector representing the probability corresponding to

each category.

• True 𝑣, is the true value related to input 𝐴.

ℓ(𝑓𝜃 𝐴 , 𝑣) = ℓ(ො𝑣, 𝑣)
measures the difference between the CNN prediction ො𝑣 and the true value 𝑣.

Application

CNNs have a large number of applications in the field of computer vision, where the input is an image,

represented by a three-dimensional array 𝑐ℎ𝑎𝑛𝑛𝑒𝑙, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑤𝑖𝑑𝑡ℎ . When the image is in black and white,

channel=1. When the image is in color, channel=3 (RGB).

CNN Model

7

Convolutional neural network (CNN)

CNN Model-example

8

Convolutional neural network (CNN)

Input image

(1, 32, 32)

Parameters 𝜃

Output prediction

ො𝑣= [0.98, …., 0.02]

The following example shows how the CNN model recognizes that the input image is the letter "A".

True value

𝑣= [1, …., 0]

The objective of the training is to minimize the loss function or objective

function w.r.t parameters 𝜃.

The expected risk

The empirical risk

When the training set is ready, we can optimize the empirical risk. This

minimization of the empirical risk is an unconstrainted non-convex problem,

where we can use gradient descent to optimize

Training

Convolutional neural network (CNN)

9

()() (),L f A v =

()
1

1ˆ () (), i

n

n i

i

L f A v
n

=

=

1
ˆ ()kk k nL + = −

Prediction of the saddle point value

10

Method

Model

11

Solve the game problem by CNN

Input 𝐴
(1, 10, 10)

Parameters 𝜃

Output

(1,)

• Input 𝐴
The input A is a two-player zero-sum game

represented with the shape (1, n, m).

• Output ො𝑣
The output represent the CNN prediction

to the saddle point value.

• True 𝑣
𝑣 is the saddle point value of the input

matrix game.

We want the CNN model to be

able to predict the saddle point

value for a given two-player

zero-sum game

v̂

ො𝑣

Training-Data set

12

Solve the game problem by CNN

• Matrix {𝐴𝑖}
Each 𝐴𝑖 represents a two-player zero-sum game.

𝐴𝑖 is sampled according to a probability

distribution and a game size. For example, we

can use the uniform distribution U(-10, 100) with

game size (10, 10)

• True {𝑣𝑖
∗}

For each 𝐴𝑖, we obtain its true saddle point value

𝑣𝑖
∗
by using the linear programming solver.

A training sample has the form

(𝐴𝑖 , 𝑣𝑖
∗), where 𝐴𝑖 represent the input

game and 𝑣𝑖
∗

is its saddle point

value. 𝐴𝑖 , 𝑣𝑖
∗

represents the whole

training dataset.

Training-the overall procedure

13

Solve the game problem by CNN

The overall training procedure

can be dived as two parts.

• Generating data

Is to obtain the training data set

{ 𝐴𝑖 , 𝑣𝑖
∗ }.

• Training CNN

Is to train the CNN model using

the just generated dataset

𝐴𝑖 , 𝑣𝑖
∗

.

Training-Algorithm-1

14

Solve the game problem by CNN

• Function Generate

Is used to generate a training sample

𝐴𝑖, 𝑣𝑖
∗

. We need to provide this function

with the game size (n, m) and probability

distribution, and the matrix game will be

generated according to these given

conditions.

• Function Train

Is used to train the CNN model by the

training sample 𝐴𝑖 , 𝑣𝑖
∗ .

Training-Algorithm-2

15

Solve the game problem by CNN

• Separated training

Is the traditional way to train a model, in

machine learning study. The training

dataset is created first and then the model

will be trained on the dataset.

• Joint training

combines generating data and training

model.

Loop 1 for generating dataset

Loop 2 for training the CNN
model

One Loop contains both
generating data and
training the CNN model

Solution of the saddle point strategy

16

17

Obtain the saddle point strategy

The CNN model can only give prediction ො𝑣 for 𝑣∗. we need
to solve a linear system to obtain the corresponding saddle
point strategy (ො𝑥, ො𝑦).

Solve the following Non-convex equality system to obtain
the corrsponding (ො𝑥, ො𝑦), according to the ො𝑣 and A.

It can be reduced to the convex Linear system

Example

53 86 67 43 67

33 40 96 29 69

44 24 22 28 26

81 18 63 36 55

78 87 51 30 36

A = ො𝑣 = 35.6

ො𝑥 = [0. 06, 0.10, 0.62, 0.14, 0.08]
ො𝑦 = [0. 10, 0.23, 0.14, 0.36, 0.17]

This can be solved directly
By Gurobi or other non-convex
solver.

This can be solved all convex
solver, such as cvxpy or scipy.

Numerical results

18

Training loss

19

Numerical results

• The training loss is computed on the untrained
test data.

• The loss function decreases from the initial
1300 to less than 1

• The joint training way can converge to a lower
loss

Comparison between LP and CNN

20

Numerical results

• CNN is much faster than LP in solving two-
player zero-sum games

• CNN can take advantage of the GPU
computation and parallel computation

• CNNs can compute the solution in constant
time O(1), while LP requires complexity O(n).
This is because CNNs are essentially a
function.

Conclusion

21

Comparison between LP and CNN

22

Conclusion

1. A brief review of two-person zero-sum games, saddle points, and linear programming solution
methods.

2. A brief introduction of CNNs
3. How to use CNNs to predict saddle point values ො𝑣 of two-player zero-sum games.
4. How to find the corresponding strategy profile (ො𝑥, ො𝑦) according to the value ො𝑣.
5. Numerical results, comparison between our CNN approach and LP.

23

« Thank you »

Reference:

1. Wu, D., & Lisser, A. (2022). Using CNN for solving two-player zero-sum games. Expert Systems with Applications, (p. 117545).

2. Wu, D., & Lisser, A. (2022). A dynamical neural network approach for solving stochastic two-player zero-sum games. Neural Networks, 152, 140-149.
3. Dantzig, G. (2018). Linear Programming and Extensions. Santa Monica, CA: RAND Corporation. doi:10.7249/r366.

4. Fan, K. (1953). Minimax Theorems. Proceedings of the National Academy of Sciences, 39 , 42–47. doi:10.1073/pnas.39.1.42.

5. Courville, I. G., Bengio, Y., & Aaron (2016). Deep learning. Nature, 29 , 1–73. URL: http://www.deeplearningbook.org.

E-mail : dawen.wu@centralsupelec.fr

http://www.deeplearningbook.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

