

Using CNN to solve Two player zero-sum games

Dawen Wu

Sep 2021

Introduction

Background

- A two-person zero-sum game can be represented by a matrix, e.g.,
 - $A = \begin{bmatrix} 1 & 7 & 5 \\ 2 & 4 & 3 \\ 3 & 10 & 6 \end{bmatrix}.$
- One of the classical problems is to solve $v = \min_y \max_x x^T Ay$, where v denotes the saddle point value and (x^*, y^*) denotes the saddle point strategy.
- This problem can be solved by linear programming.
- The famous minmax theorem guarantees the existence of a saddle point.

Problem formulation

We consider the matrix *A* to satisfy the following,

- The shape of *A* is given and fixed.
- The elements of *A* come from a given probability distribution.

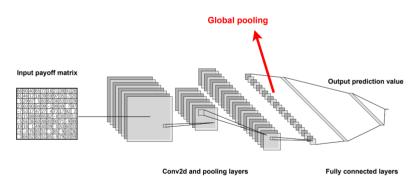
We use a convolutional neural network (CNN) approach to find an estimate \hat{v} and use a linear system to derive (\hat{x}, \hat{y}) in the corresponding $\hat{v} = \hat{x}^T A \hat{y}$.

We evaluate the CNN method results by 1) Accuracy: The predicted \hat{v} is expected to be as close as possible to the real v. 2) Efficiency: The CNN method is expected to be faster than the classical linear programming method.

Method

CNN method to predict saddle point value

- 1. Generate a certain number of matrices A according to the given shape and probability distribution. Use linear programming to find v. Multiple (A, v) together form the training set.
- 2. Construct a CNN model in which the number of input channels is 1, like the following,



3. Go training.

Experimental results

Linear system to obtain saddle point strategy

After the CNN predicts \hat{v} , the remaining problem is how to get (x, y) in $\hat{v} = \hat{x}^T A \hat{y}$

Solving the $\hat{v} = \hat{x}^T A \hat{y}$ problem can be converted to solving down the following linear system problems, where *n*, *m* denote the size of *x* and *y*.

$$\mathbf{A}^T \mathbf{x} \ge \hat{v} \mathbf{e}_{\mathbf{m}} \mathbf{x}^T \mathbf{e}_{\mathbf{n}} = 1, \mathbf{x} \ge 0,$$
 (1)

$$\begin{aligned} \mathbf{A}\mathbf{y} &\leq \hat{v}\mathbf{e}_{\mathbf{n}} \\ \mathbf{y}^{T}\mathbf{e}_{\mathbf{m}} &= 1, \mathbf{y} \geq 0, \end{aligned}$$
 (2)

- when $\hat{v} = v$, both (1) and (2) are feasible.
- When $\hat{v} < v$, only (1) is feasible, and the corresponding \hat{y} is the best response of $-A^T \hat{x}$.
- When $\hat{v} > v$, only (2) is feasible, and the corresponding \hat{x} is the best response of $A\hat{y}$.

References

We consider the game size to be 1000 * 1000 and a uniform(-10, 100) probability distribution. Compare the CNN method to linear programming(LP), fictitious play(FP) and EXP3 methods.

1000*1000			
Algorithms	CPU Time	Value	Gap (%)
LP	1.3035	45.0293	-
CNN	0.00086	45.6481	1.3553%
FP	259.3845	47.6020	5.4043%
Exp3	0.7100	45.0431	0.0304%

Table 1: Comparison between LP, CNN and two learning algorithms

[1] Dawen Wu, Abdel Lisser. Using CNN for solving two-player zero-sum games. 2021. $\langle hal-03341813 \rangle$

[2] G. B. Dantzig, Linear programming and extensions, Vol. 48, Princeton university press, 1998.

[3] P. Fischer, A. Dosovitskiy, T. Brox, Image orientation estimation with convolutional networks, in: German Conference on Pattern Recognition, Springer, 2015, pp. 368–378

